The Vietoris system in strong shape and strong homology

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong Alliances in Graphs

For any simple connected graph $G=(V,E)$, a defensive alliance is a subset $S$ of $V$ satisfying the condition that every vertex $vin S$ has at most one more neighbour in $V-S$ than it has in $S$. The minimum cardinality of any defensive alliance in $G$ is called the alliance number of $G$, denoted $a(G)$. In this paper, we introduce a new type of alliance number called $k$-strong alliance numb...

متن کامل

Metrizable Shape and Strong Shape Equivalences

In this paper we construct a functor Φ : proTop → proANR which extends Mardešić correspondence that assigns to every metrizable space its canonical ANR-resolution. Such a functor allows one to define the strong shape category of prospaces and, moreover, to define a class of spaces, called strongly fibered, that play for strong shape equivalences the role that ANRspaces play for ordinary shape e...

متن کامل

Multicore Homology via Mayer Vietoris

In this work we investigate the parallel computation of homology using the Mayer-Vietoris principle. We present a two stage approach for parallelizing persistence. In the first stage, we produce a cover of the input cell complex by overlapping subspaces. In the second stage, we use this cover to build the Mayer-Vietoris blowup complex, a topological space, which organizes the various subspaces ...

متن کامل

Strong shape of the Stone-Čech compactification

J. Keesling has shown that for connected spaces X the natural inclusion e : X → βX of X in its Stone-Čech compactification is a shape equivalence if and only if X is pseudocompact. This paper establishes the analogous result for strong shape. Moreover, pseudocompact spaces are characterized as spaces which admit compact resolutions, which improves a result of I. Lončar.

متن کامل

a generalization of strong causality

در این رساله t_n - علیت قوی تعریف می شود. این رده ها در جدول علیت فضا- زمان بین علیت پایدار و علیت قوی قرار دارند. یک قضیه برای رده بندی آنها ثابت می شود و t_n- علیت قوی با رده های علی کارتر مقایسه می شود. همچنین ثابت می شود که علیت فشرده پایدار از t_n - علیت قوی نتیجه می شود. بعلاوه به بررسی رابطه نظریه دامنه ها با نسبیت عام می پردازیم و ثابت می کنیم که نوع خاصی از فضا- زمان های علی پایدار, ب...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fundamenta Mathematicae

سال: 1992

ISSN: 0016-2736,1730-6329

DOI: 10.4064/fm-141-2-147-168